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1 Introduction 
The time-independent thermodynamic properties of molecular liquids and solids 
and their rationalization in terms of time-independent statistical mechanics 
receive considerable attention in undergraduate courses in chemistry and physics. 
The dynamical properties of such systems involve translational, vibrational, and 
reorientational modes of molecular motion and whereas the vibrational motions, 
which give rise to infrared, Raman, and neutron-scattering spectra, are well 
covered in undergraduate courses, considerably less attention is given to transla- 
tional and reorientational modes of motion. Many of the important physical 
properties of liquids and solids relate to the latter modes of motion, and in 
recent years there has been a considerable interest in their study using many 
experimental techniques. Table 1 lists a selection of the techniques, and will be 
discussed below. In parallel with experimental studies, a sound theoretical 
framework has emerged, based on time-correlation functions, which allows 
translational and reorientational motions to be described formally and in physical 
terms. In addition there have been simulations, by computer, of the dynamics 
of assemblies of molecules which yield various time-correlation functions and 
which may be used for comparison with experimental data and with simple 
models for motion. We shall see that molecular motions play an essential part 
in the interpretation of data from relaxation studies, absorption spectroscopy, 
and certain scattering experiments. Such experiments cover in total the frequency 
range lo-4-1012 Hz. Clearly an appreciation of the nature of molecular motions, 
their time-scale, and their variation with temperature and applied pressure, 
in liquids and solids, as revealed by different techniques, should be an essential 
part of courses concerned with molecular behaviour. However, there are several 
difficulties which must be overcome before this can be fully achieved. One major 
difficulty is that a description of translational and reorientational motions is 
best given through the medium of time-correlation functions and chemists are, 
on the whole, unfamiliar with such quantities. Excellent accounts of time- 
correlation functions are available, but most are at research level, with the 
attendant mathematical sophistication, or do not give sufficient information to 
serve as an introduction. One aim of the present review is to give an account of 
time-correlation functions amply illustrated with examples of their deduction 
for simple models which have practical importance. In addition, it is shown how 
time-correlation functions may be related to experimental quantities taking as 
examples (i) the linear response of a dielectric medium and (ii) quasi-elastic 
scattering from moving point-scatterers. The remainder of the review gives 
examples of time-correlation functions which have been obtained experimentally 
using several of the techniques listed in Table 1 .  
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2 Time-correlation Functions 

A. General Considerations.-There are several accounts dealing with time- 
correlation functions as they arise for different modes of motion and for different 
experimental techniques (see Table 1 and refs. therein). Of the available accounts, 
those of Zwanzig,3 G0rdon,~7 Berne,2 and Berne and ~o-workers~79~8 are 
particularly instructive owing to their wide scope. 

In this section we consider the definitions of the autocorrelation function C ( t )  
for a dynamical variable A of a system whose macroscopic thermodynamic 
properties are independent of time. A might be the velocity v, position Y, or 
dipole moment p, suitably defined, for a molecule in an assembly of molecules. 

may be defined as the ensemble-averaged quantity 

C(t> = jj” A(p,q; 7) m , 4 ;  t + .>f(P, s) dPd4 

= <A(7)A(t + 7)) 5 ( A ( O ) A ( r ) )  (1) 

t T )  is the value of A at time ( t  + T )  given that the value was A (T) at time T .  

For a stationary system the product (A(T)A(t + T ) )  is dependent on the interval t 
bat not on the arbitrary time T .  f ( p , q )  is the equilibrium phase-space distribution 
function; f(p,q)dpdq is the probability that a molecule has conjugate momenta 
and co-ordinates in the ranges p to ( p  + dp) and q to (q + dq) respectively. 
A depends upon p and q explicitly and, because these quantities vary with time 
for a given molecule, A will vary with time for that molecule. 

C(O) = IJ A2(p,q; T)f(p,q)dpdq = ( A ~ ( T ) )  is the mean-square value of A 

which is calculable, in principle, from time-independent statistical mechanics. 
The deduction of C ( t )  is made as follows: Figure 1 shows A(p,q) ,  in phase-space, 
along a trajectory arising from the thermal motions of the system. We first obtain 
A(T) . A ( t  + T )  averaged over all trajectories which may occur for the interval t ,  
and weight this averaged quantity by the probability f(p,q)dpdq of having the 
initial (p ,q )  condition for the molecule. The process is repeated from all allowed 
( p , q )  starting conditions and C ( t )  is obtained using equation (1). 

C(f) may also be defined as a time-averaged quantity:2 

C(t)  = lim (f) J T  47) A(t  + 7) d7 
T+rn 0 

This may be visualized as follows: the dynamical variable follows a trajectory 
in phase-space as time progresses (Figure 1) and we may form A ( T ) A ( ~  4- T )  
starting at the arbitrary time T.  But there is an equal probability that we should 
take such a product for the interval t at any time T through the complete trajectory 
in order to obtain an averaged quantity for an interval of time t. Equation (2) 
becomes in the limit T --f 03 this average quantity. For a stationary system the 

57 B. J. Berne and G .  D. Harp, Adv. Chem. Phys., 1970, 17, 63.  
58 B. J. Berne and D. Forster, Ann. Rev. Phys. Chem., 1971, 22, 563. 
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A 

t 

Figure 1 Schematic illustratiori of a phase-space trajectory for the dynaniical vnriable A 

ensemble-averaged quantity, equation ( 1 )  and the time-averaged quantity, 
equation (2), are equal, this being known as the ergodic hypothe~is.~,4’ 

For a comprehensive account of the properties of molecular time-correlation 
functions, both classical and quantum mechanical, the reader is referred to 
Berne.2 The present account considers only classical functions and we note 
that these have sevkral special mathematical properties2 amongst which are the 
following : 

( N )  classical time-correlation functions are even in time, C(t) = (A(O)A(t)) = 
(A(O)A( - t)). Thus a series expansion of C ( t )  contains only terms in even powers 
o f t .  Several models for molecular motion give correlation functions whose series 
expansions involve terms in odd powers of t ,  and these are not strictly acceptable 
correlation functions (e.g. for an exponential function of time). 

(b) C ( t )  satisfies the inequality - I d [C(t)/C(O)] 6 1. Thus C(t) may become 
negative with increased t, as is the case for the classical rotator in three dimensions 
(see Section 2D below). For many models for motion C ( t )  --f 0 as t --f cc, and for 
such cases we may define a correlation time - T ~  for the process as 

For the special case of an exponential correlation function C ( t )  = 
C(0)  exp [ - (t /~’)] ,  then T~ = 7‘. For a distribution of correlation (or ‘relaxation’) 
times, where 

C ( t )  = C(0) J p(.’) iexp[- ( t / ~ ’ ) ]  dT‘ 

then from equation (3) 
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T~ = (7') = ~(7') ~ ' d r '  f 
For certain models of motion, C ( t )  + constant as t -+ a, such a result being 
obtained for site models of non-equivalent sites and for the rotational diffusion 
of a symmetric top (see e.g.  ref. 41). 

C ( t )  described above refers to the autocorrelation function of the dynamical 
variable A, e.g. the molecular time-autocorrelation functions (v i (0)  - v i ( t ) ) ,  
(v i (0)  p.i(t)) for a reference molecule i. Cross-correlation 
functions between molecules, (v i (0) .  v j ( t ) ) ,  i # jetc.,  may be important in certain 
systems, for example (i) cross-correlations between group dipole moments along a 
polymer chain or (ii) cross-correlations between diffusing particles in a bulk 
liquid. Cross-correlation functions will be disctissed as they arise, but for 
detailed aszcounts the reader is referred to Berne.2 Berne and P e ~ o r a . ~ ~  and 
Williams.7~13 

In order to clarify the nature of C ( t ) ,  we consider simple models for molecular 
motion. 

r i ( t ) ) ,  and (pi(0) 

B. Translational Diffusion.-Consider the centre-of-mass motion of spherical 
particles (atoms, molecules) in the liquid state to be governed by a diffusion 
equation 

where Vt2 is the radial part of the Laplacian operator, and is familiar from 
quantum mechanics; Dt is the translational diffusion coefficient and Cs(R, t )  d3R 
is the probability that the particle is in the volume element d3R about R at time 
t ,  given it was at the origin at t = 0. It  is readily verified by substitution in 
equation (4) that Gs(R,t) is given by 

Cs(R,O) = 8(R) (5b) 

where equation (5b) expresses the condition that the particle is at the origin 
at t = 0. Gs(R,t)  is called the Van Hove self space-time correlation function.59 
This correlation function is used in quasi-elastic light ~cattering.2~37~40~~~ The 
time-dependence of the intensity of light scattered from N independently moving 
spherical point-scatterers may be related to an 'intermediate' self-scattering 
function Fs(k,t) where2 

where v j ( t  + T )  is the position of the jth scatterer at ( t  + 7) given that its position 
was rj(7) at time T .  The sum is taken over all N scatterers in the scattering 

5 9  L. Van Hove, Phys. Rev., 1954, 95, 249. 
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volume. k is the scattering v e c t ~ r ~ ~ p ~ l  of magnitude Ikl = (4m/Ao)  sin(8/2) 
where n, Ao, and 8 are refractive index, free-space wavelength, and scattering 
angle respectively. Equation (6) expresses a time-average over the arbitrary 
time T .  Assuming the system to be ergodic, and if all scatterers are equivalent, 
allowing the sum to be omitted, equation (6) may be written as the phase-space 
average (ensemble-average) 

Fs(k,t) = Gs(R,t)  [exp(ik.R)] d3R s (7) 

from equations ( 5 )  and (7) 

Fs(k,t) = exp( - Dtk2t) 

Thus for the simple case of independent spherical point-scatterers undergoing 
translational diffusion, the time-correlation function Fs(k,t) is exponential in 
time and Dt may be determined from the k-dependence of its correlation time 
(Dtk2)-1. Fs(k,t)  may be determined experimentally in the time domain using 
photon-correlation spe~troscopy.~5-~l Scattering measurements may also be 
conducted in the frequency domain where the spectrum I(k,w) is measured as a 
function of frequency ( w )  for given values of k .  For the simple case of scattering 
which led to equation (8), I(k,w) is related to Fs(k,t) according to the Fourier 
transformation6*>61 

(8) 

Z(k,w) = NAs2 - 1 Fs(k,t) exp[i(w - w,)t]dt (9) 2n -a3 

where A s  is the scattering-amplitude factor and wo is the angular frequency of 
the incident radiation. From equations (8) and (9) 

N: [(Dtk”)” Dtk2 + (w - wo)2 1 Z(k,w) = -2- 

This spectrum is Lorentzian-shaped with half-width d W k  = 2Dtk2; thus Dt may 
be obtained from the k-dependence of d W k .  Thus simple translational diffusion 
gives rise to the time-correlation functions* Gs(R,t)  and Fs(k,t)  involving Dt and 
the latter quantity may be obtained experimentally either directly from Fs(k,t)  or 
from Z(k,w). 

Before leaving the case of translational diffusion, we note that G(R, t )  and 
F,(k,t)  as given by equations (5) and (8) are not even in time and are thus not 
strictly acceptable as correlation functions. This is a consequence of the fact 
that equation (4) does not take into account the masses of the diffusing particles. 
We note that the Einstein relation ( d R 2 ( t ) )  = 6Dtt is inappropriate at the short- 
est times for the same reason. Proper inclusion of particle mass will lead to 

*The general definition of G,(R,t) takes the form of a time-correlation function: 
GAR4 = <WR - [rj(t> - rd0)1)> 

(see e.g.  ref. 41, p. 58). 
8 O  G .  Arfken, ‘Mathematical Methods for Physicists’, Academic Press, New York, 1966. 
61 R. Bracewell, ‘The Fourier Transformation and its Applications’, McGraw Hill, New York, 

1965. 
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time-correlation functions whose series expansions contain only even powers 
of t ,  but the formulation and solution of the equations of motion will be 
complicated. Berne2 has outlined an approach, based on information theory, 
which leads to equation ( 5 ) ,  and hence (8), in the long-time region, but includes 
the finite masses of the particles so that Gs(R, t )  is better behaved at short times. 
Gs(R,t) is deduced subject to the constraints that Gs(R,t) be normalized, 
Gs(R,O) = &R), and that (dR2(t)) be known, and he obtains2 

Equation (1 1) is the well-known Gaussian approximation2 for Gs(R,t). (dR2(t)) 
is given quite generally by2 

( dR2( t ) )  = 2 1' (Y(O).V(T)) ( t  - T) d7 
0 

If (v(O).v(t)) is specified, ( d R z ( t ) ) ,  Fs(k,t), and Gs(R,t) follow from equations 
(11)-(13). Berne2 specified (v(O).v(t)) = (v2(0))exp( - y  It I), where y is a 
'friction-coefficient'. Insertion into equation (13) gives for t > 0 

( d R 2 ( f ) )  = 2<v2(0)) [(f) - 7 [1 - exp(-rf)l] (14) 
1 

Thus 
( d R 2 ( t ) )  = (v2(0)).t2; t < y-' 

( AR2Jt)) = 2(v2(0))t/y 3 6 D d ;  t > y-l 

Equation (1 5b) corresponds to translational diffusion, equation (5a), while 
equation (15a) corresponds to the case of free-particle motion with 
(~~ (0 ) )  = 3kT/M. Clearly equation (14) taken with equations (11) and (12) 
leads to an improvement over equations (5) and (6)  and will be applicable 
to the translational motions of, say, spherical polymer molecules (e.g.  high malec- 
ular weight polystyrene) in a continuum of small solvent molecules. However, 
equation (14) fails to account for the motions of small molecules-as evidenced 
by computer simulations2-since (v(0) * v(t)) there does not follow the simple 
exponential relation in time. 

(15b) 

C. Rotational Diffusion.-The rotational diffusion of a unit vector may be 
considered2941962 as a random motion of a point on the surface of a sphere of 
unit radius. If*f(G,t)dG is the probability that the unit vector points into the 
solid angle dJ2 around at time t ,  given that its direction was uniquely along the 
+ z  direction at t = 0, then the diffusion equation may be written in polar- 
co-ordinate form as 
*f(O,f) as defined here should be written in the notation of the conditional probability 
functionf(Q,tlO,O), but here and in the following sections we writef(C2,t) for the sake of 
brevity. 
6a B. J. Berne, P. Pechukas, and G.  D. Harp, J.  Chern. Phys., 1968, 49, 3125. 
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where Dr is the rotational diffusion coefficient. 
If we assume that the motion always occurs in a manner such that f ( Q , t )  is 

symmetric with respect to the (arbitrary) z-axis, as may be the case for an iso- 
tropic liquid, thenf(Q,t) depends on 0 and I but not on 4. For this special case 
equation (16) may be rewritten in terms of the variable u = cos6: 

Equation (17) is conveniently solvedlg by expandingf(i2,t) in terms of Legendre 
polynomials.60 

to 
f ( Q , t )  = 2 Mu>arn(t> 

m=O 

Substituting equation (18) into equation (17) gives 

But the term in square brackets on the 1.h.s. is - m(m + l)Pm(u) (see e.g.  ref. 60, 
p. 424), so equation (19) becomes 

m=O m=O 

Equating coefficients of Pm(u) yields a set of uncoupled equations each of the 
form 

Hence 

am(?) = arn(0) exp[- m(m + 1) Drtl 
to 

m=b 

The probability of obtaining the vector in the range u to u + du is 

f(u,t) du = 1 ‘”f( G,t) du d+ = 2nf( In,?) du . 

At t = 0 the vector is uniquely along the +z-axis, so f’(u,O) = 6(u - l), but this 

delta function may be expanded as 2 &(2m + l)Pm(u), and comparing this with 

0 

co 

m=O 
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00 

2.rrf(Q,O) = 27r 2 Pm(u)am(0) gives am(0) = (2m + 1)/(4~).  Equation (23) may be 

written as 
m=O 

00 

m=O 

The orientational time-correlation functions (Pn [cos&t)]) = (Pn [ u ( t ) ] )  are 
defined by the relation 

The orthogonality and normalization conditions for Legendre polynomials 
are expressed by 

Hence, from equations (24) and (25), 

(Pn[u(t>]> = exp[- n(n + 1) D,t] (27) 

Equations (24) and (27) are the results for rotational diffusion governed by 
equation (16). f ( Q , t )  involves products of space functions, Pm(u), and time func- 
tions, exp[-m(m + l )D, t ]  and, since both functions decrease rapidly with 
increasing rn,f(Q,t)  is dominated by the first few terms in the series. The correla- 
tion functions, equation (27), are just individual decay functions in equation (24), 
and being exponential in time (Pn [ ~ ( t ) ] )  decays with increasing rapidity with 
increasing n. The pattern for the evaluation of C(r )  for translational and rota- 
tional diffusion is (i) solve the equations of motion for the conditional space- 
time distribution functions G ( R , t )  and f (Q, t )  and (ii) deduce the phase-space 
averages C ( t )  using equations (7) and (25). Averaging over a momentum distribu- 
tion is not involved since equations (4) and (16) involve co-ordinates but not 
momenta. This means that the mass or inertia of the molecule has not been 
explicitly considered, with the result that the translator or rotator moves at its 
terminal linear or angular velocity, but with constantly changing direction. 

Equations (24) and (27) may only be applied in the ‘long-time’ region for 
large molecules moving in a continuum of small (solvent) molecules-in com- 
mon with equations (5) and (8) for translational diffusion. There is ample 
evidence from e ~ p e r i m e n t 5 ~ ~ ~ ~ ~ ~ ~ ~  -56963 and from computer simula- 
tions2~57J8~64-69 that orientational correlation functions for small inole,cules 

83 H. H. Dardy, V. Volterra, and T. A. Litovitz, J .  Chem. Phys., 1973, 59, 4491. 
84 B. J. Alder and T. E. Wainwright, J. Chem. Phys., 1959, 31,459. 
65 A. Rahman, Phys. Rev,,  1964, 136A, 405. 
66 J. Barojas, D .  Levesque, and B. Quantrec, Phys. Rev. (A) ,  1973,7, 1092. 
67 P. S. Y. Cheung and J. G. Powles, Mol. Phys., 1975, 30, 921. 
68 A. Rahman and F. H. Stillinger, J .  Chem. Phys., 1971, 55, 3336. 
6s J. S. Rowlinson and M. Evans, ,4nn. Reports, 1975, 72, 5 .  

99 



Time-correlation Functions and Molecular Motion 

in the liquid state d o  not conform to  equations (24) and (27), but resemble 
the free-rotator correlation functions at short times (see Section 2 D  below), 
It is appropriate at this point to indicate difficulties which arise when a time- 
correlation function which is not even in time [ s .g .  equation (27)] is applied to 
experimental results. This may be illustrated by the example of the dielectric re- 
laxation and far-infrared absorption of a dipolar medium. For the special case 
of a low-permittivity medium, say a dilute solution of dipolar molecules in a 
non-polar medium, the permittivity E ( W )  = E’(w) - id’(w) is related to (PI [ ~ ( t ) ] )  
according to5J-12 

‘(W) - E m  = som [ - $ ( P , [ u ( r ) ] )  [exp - iwt ]  dt 

= 1 - iw 1; <P,[u( t ) l )  [exp - iwt]  d t  
(28) 

€0- E m  1 
where EO and E ,  are the limiting low- and high-frequency permittivities respec- 
tively. For  the case of a rotational diffusion, equation (28) becomes, with the aid 
of equation (27), the well-known single relaxation time equation 

1 
1 + iw(2Dr)-I 

- - E(W) - E m  

c0 - e m  

The plot of E”(w) against logw gives a bell-shaped curve having its maximum 
at wm = 20,. Although such an equation may be used t o  represent dielectric 
relaxation data for a variety of liquids and  solid^^-^ considerable difficulties 
arise at very high microwave frequencies and in the far-infrared range where the 
attenuation factor a(w) = od’(w)/(nc) is measured. It is a property of one-sided 
Fourier transforms61 that for a function of time g(t), 

for g ( t )  = [d(Pl[u(t)])/dt], equations (28) and (30) give for E”(w) 

For rotational diffusion, equation (27), equation (31) becomes 

where TI = (2Dr)-l. Equation (32) for WTI 9 1 gives OE”(W) = ( E O  - E ~ ) / T I ,  

i.e. the rotational diffusion model gives a(w) = constant at frequencies higher 
than the relaxation region, a wholly unrealistic and physically unacceptable 
result. The reason is clear: the correlation function is badly behaved a t  short 
times owing to the omission of inertia in its derivation. For  ( P l [ u ( t ) ] )  even in 
time, which will be obtained when inertial effects are correctly included, 
(PI [ ~ ( t ) ] )  has zero slope at t = 0 so equation (31) becomes 
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which on inversion gives 

while inversion of equation (28) gives 

Thus (Pi [~( t ) ] )  is obtained from a cosine transform of ~”(o) vs. logo data while 
(i, [ u ( t ) ] )  is obtained as a cosine transform of od’ (o ) [~  a(o)] vs. o data. 

D. Classical Free Rotation.-Correlation functions involve distributions over 
co-ordinates and momenta and in Sections B and C above we have seen simple 
examples where correlation is lost through change of molecular co-ordinates 
in time. In order to illustrate loss of correlation involving momentum distribu- 
tions, we consider the simple model2 of free rotation, in a plane, of a rod of 
moment of inertia I ,  whose rotational velocity o r  is governed by a Boltzmann 
distribution functionf(or) = [ 1 / ( 2 ~ k T ) ] *  exp [ - 10r~/(2kT)]. If x is a unit vector 
along the axis of the rod, then for a given angular velocity Or,  x(0). x ( t )  = COWrt. 
This scalar product obviously does not decay in time. The average quantity 
(x(0) . x ( t ) ) ,  i.e. averaged over f(Wr), does decay as a result of the superposition 
of cosine functions : 

For free rotation in three dimensions, (x(0). x ( t ) )  E (Pi [u ( t ) ] )  and is given 
by2,7,9,55,70 

These correlation functions are both even in time and involve the molecular 
factor I but do not involve intermolecular factors. Collisions are involved in 
establishing and maintaining the Boltzmann distribution of Or but if the time- 
scale between collisions is far longer than that required for molecular rotation, 
collisions, and hence intermolecular interactions, are not involved in the decay 
of (x(0) . x ( t ) ) .  The effect of collisions on time-correlation functions for three- 
dimensional rotators, leading for example to the J and M diffusion models of 
Gordon, have been extensively d i ~ ~ ~ ~ ~ e d ~ ~ ~ ~ 9 , ~ ~ , 5 2 , ~ ~  and this is a topic which 
continues to receive considerable attention since it embraces all the problems 
of the fast rotational motions of small molecules in the liquid and gaseous states. 
Note that (x(0) .x( t ) ) ,  equation (36), is always positive for the plane rotator 
but goes negative for the three-dimensional rotator, equation (37). For the latter 
case such behaviour is rationalized by saying that the rotating vector tends, 
after a certain time, to point on average in the opposite direction to that which 
it had at t = 0. 

’’ B. Lassier and C. Brot, Discuss. Faraday Soc., 1969, No. 48, p. 39. 
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E. Barrier Systems.-The classical motions of molecules, ions, or vacancies 
between equilibrium sites in a crystalline solid may give rise to dielectric and 
mechanical relaxation processes.4-7~11J2J4-17~71-77 Cole11 has shown how 
time-correlation functions for dielectric relaxation may be deduced for site- 
models. Williams and Cook12 have extended this work and have included Group 
Theory as an aid to the solution of the basic rate equations for complicated 
barrier systems. These orientational time-correlation functions are exponential, 
or weighted sums of exponential, functions of time since the inertia of the mole- 
cule is not taken into account in the rate equations.* 

Consider first the simple case of a two-site model, Figure 2, where a dipole 

Figure 2 Energy diagram for  dipole reorientation between two equivalent sites T aparl 

may occupy two orientations, 7r apart, separated by a barrier E, and moves 
between sites with a !ransition probability k .  The apriori occupational probabili- 
tiespl(t),pz(t) for silzs 1 and 2 are governed by the rate equations 

Whilst such equations may be solved by several methods,12,14-16,72-75 that12 
involving rnatrice~7~ and Group Theory79980 is particularly useful for all site 

*Brats has considered the short-time behaviour for molecular motion in a barrier system. 
71 H. Frohlich, ‘Theory of Dielectrics’, Oxford U.P., 1949. 

73 5. D. Hoffman, J.  Chem. Phys., 1952, 20, 541. 
74 J. D. Yoffman, J.  Chem. Phys., 1955, 23, 1331. 
76  J. D. Hoffman and B. J .  Axilrod, J. Res. Nat.  Bur. Stand., 1955, 54, 357. 
7g C .  Brot and I.  Darmon, J .  Chem. Phys., 1970, 53, 2271. 
77  A. Gavezzotti and M. Simonetta, Acta Cryst., 1975, A31, 645. 
7 8  G .  Stephenson, ‘An Introduction to Matrices, Sets and Groups’, Longmans Green and CO. 

7 s  D. Schonland, ‘Molecular Symmetry’, Van Nostrand, London, 1965. 

J. D. Hoffman and H. G. Pfeiffer, J .  Chem. Phys., 1954, 22, 132. 

London, 1965, pp. 73, 127. 

F. A. Cotton, ‘Chemical Applications of Group Theory’, Wiley, New York, 1963. 
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models possessing a degree of symmetry. Equation (38) may be written in matrix 
form as 

(39) 
d 
p ( t )  = TP(t) 

whose general solution is7* 

p( t )  = [expTt]p(O) = S[e~pDt lS-~p(O)  (40) 

where p ( t )  = {p l ( t ) ,  p2(t)) and is the column vector of the p i ( t ) ,  and 

T = [ - '1 . S is the matrix that performs the transformation S-l TS = D, 

where D is a diagonal matrix. If S and D can be found, p ( t )  follows from 
equation (40) with the aid of the relation78 exp {diag Xmt ] = {diag (expXmt) }. Here 
the Am are the elements of D .  Although the solution to equation (40) is simple 
for the two-site model, we introduce Group Theory at this stage since its use 
in more complicated site-models is well illustrated by the two-site model. An 
orthogonal matrix Q is deduced using the symmetry of the sites12 and we per- 
form the transformation Q-lTQ = W. W is a matrix which is blocked out 
along its main diagonal. Its constituent smaller matrices may be taken individually 
and their eigenvalues and eigenvectors determined. This leads to a matrix U 
where U-1WU = D .  Hence 

k - k  

p(t)  = QU[expDt] U-l Q-lp(O) 

In  suitable cases12 Q = S, and this occurs provided that no class appears 
more than once in the reducible representation generated using the sites as the 
basis set. For the two-site model the C2 character table gives r = A + By and 
forming Q from A and B irreducible representations and hence W we find 
Q-lTQ = D and U = E. Here E is the identity matrix, and Q = S. Hence 

(41) 

where $2(t) = exp( - 2kt). 
(~ (0) .  p(t) ) ,  which is the non-normalized dipole vector-time-correlation 
function = p2(x(0). x ( t ) ) ,  is obtainedllJ2 as the average of the decay functions 
&(t) and &(t)  for dipoles starting in sites 1 and 2 respectively at t = 0. 

L 

<P(O).P(t)> = P 2  *I "pi 5dO;  (4) = .2 Pja(t>CLf. Pj (44% b) 
1 = 1  z=1 

'pi is the equilibrium occupation probability of site i ;  the sum is taken over all 
sites. pji ( t )  is the conditional probability that the dipole is in site j at t given 
it was in site i at t = 0. pjl(t) follows from equation (43) withpl(0) = 1 , p~(0)  = 0 
with similar considerations for pj2(t). Now pl . p1 = p2 .p2 = - p1. p2, SO 

<I.@). W >  = p2eXp(-2W (45) 
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and the correlation function is exponential in time with a relaxation time (2k)-1. 
For more complicated barrier systems several relaxation times may arise and also 
(p(0)  . p ( t ) )  will not generally decay to zero for sites that are non-equivalent 
in energy. As examples we consider12 (i) a six-site model having c6 symmetry, 
(ii) a six-site model having D4h symmetry, and (iii) a three-site model having 
CzV symmetry. Table 2 indicates these models and gives the essential matrices. 

(i) All sites are equal in energy and the transition probabilities ki-j are all 
equal to k .  Of the five decay functions,12 $ j ( t ) ,  only three are distinguishable 
and $ 2 ( t )  = exp( - 4kt) ,  $ 3 ( t )  = +I([) = exp( - kt ) ,  &(t)  = $ s ( t )  = exp( - 3kt) .  
For this case all the &(t)  are equal since the loss of correlation in time starting 
from a given site is the same asthat from 

<P(O).P.(t>> = P251(t) = 

'pi = Q for i = 1-6; thus 

where 

any of the six equivalent sites. Also 

Hence (p(O).p(t)) = p2exp(-kt). Thus of the three relaxation modes $ 2 ( t ) ,  

$a($), and $5(t) only &(t) is active in the dielectric experiment. Similar considera- 
tions show that (3 cos2B(t) - 1)/2, which corresponds to Kerr-effect relaxation, 
is characterized by $5(t). This emphasizes that different experimental techniques 
may probe different aspects of the motion where the motion is completely 
described by the basic rate equations. It is therefore neces:ary, in general, to 
compare the time-correlation functions obtained from several related experi- 
ments15J6 in order to establish the mechanism of relaxation. 

(ii) Sites 1 and 6 are equal in energy; sites 2-5 are equivalent but different 
in energy from sites 1 and 6. There are four distinguishable decay functions,l2 
$ 2 ( t )  = exp [- 2(2k1 + kz)t ] ,  $ 3 ( t )  = exp [ - 2(k2 + 2k3)t], yb(t) = exp [ - 4klt), 
and $5(t) = $ 6 ( t )  = exp[-2(k2 + k3)tI. Since &(t) = (6(f), &(t) = &(t)  = 

( ~ ( t )  = t5(t), and Opl = OP6 = [2(1 + 277)]-1, Op2 = op3 = op4 = op5 = 
1;7 [2(1 + 277)]-1, where 17 = (kl/kz), it follows that 

In this case two of the four relaxation modes are active in a dielectric experiment. 
Note that all of (p2 )  = 2 Opt pi2 is relaxed for models (i) and (ii), i.e 

(~(0). ~ ( t ) )  decays to zero. 
(iii) Sites 2 and 3 are equivalent but are different in energy from site 1 .  Use of 

the CzV character table gives Q and hence W, where W contains one 1 x 1 and 
one 2 x 2 matrix. The latter matrix has one eigenvalue which is zero; thus use 
of Group Theory easily leads to D and U where 

i 
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y = (ki/k2). p ( t )  and (p(0)  .p ( t ) )  follow from equations (41) and (44). Hence1l9l2 

+ 2Y(l + 2r) (1 - cos2812) 1Cl3U)I 

where 8 1 2  is the angle between the dipole direction in sites 1 and 2, 
$ z ( t )  = exp [ - ( 2 k l  + k ~ ) t ] ,  and #3(t) = exp [ - (k2  + 2ka)tl. The correlation 
function does not decay to zero but to p2(1 + 2yc0s812)~/(1 + 2y)2. This is just 

[ (p) ]2  where ( p )  is the mean dipole moment; ( p }  = 2 'pi pi for the three-site 

model, Since site 1 has a different energy from that of the equivalent sites 2 and 3, 
( p )  lies along the dipole direction for site 1. This is an example where correlation 
is not completely lost with increasing time. For a polycrystalline material the 
random distribution of the co-ordinates of barrier systems ensures that ( p )  will 
average to zero for a bulk material. For such a case dielectric relaxation deter- 
mines an effective dipole moment peff  = [ ( p 2 )  - (P}~)]* and a relaxation 
governed by #z(t )  and # 3 ( t ) .  Such barrier models are ~ s e d ~ l ~ J ~ J ~ - ~ ~ 3 ~ ~ - $ 7  for 
relaxation in rotator-phase organic crystals and doped inorganic crystals. 

(49) 

3 

i= 1 

F. Many-body Systems.-The simple models considered above illustrate how 
time-correlation functions are deduced via time-dependent distribution functions. 
Although such models may approximately represent the long-time behaviour 
of various systems, they fail at short times ( t  < s), particularly for systems 
comprising small molecules. In general, the equilibrium and dynamic behaviour 
of an ensemble of molecules may only be correctly deduced by taking into account 
the attraction-repulsion interactions of all its molecules. Formally the problem 
involves the solution of the Liouville equation of motion for a given system2g3v41 
or, alternatively, the N equations of motion,2 one for each molecule! Such 
problems are essentially intractable analytically, so as an alternative the dynamics 
of large ensembles ( N  - 102) of interacting particles have been solved numeric- 
ally with the aid of a comp~ter,2,57,58,64-~8 a method which is commonly termed 
'molecular dynamics'. Such simulations yield the equilibrium information 
(e.g. radial distribution functions) and the various time-correlation functions. 
These have been carried out for argon,65 diatomic mo1ecules,2~57~58~66~67 and 
liquid water68 and will be discussed below. In principle it should be possible to 
fit different experimental time-correlations obtained for a given system using a 
simulation based on a parameterized form of the intermolecular potential, 
hence deducing its parameters. There is little doubt that this is the most thorough 
approach available for interpreting the observed equilibrium and dynamic 
properties of liquids and solids. The technique of molecular dynamics is limited 
to t < 10-10 s for small-molecule systems, whereas motions occur in many 
systems on a far longer time-scale. Such slower motions cannot be simulated 
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since one includes a very large number of molecules and the time required for 
the computations becomes prohibitive (see ref. 2, p. 621). 

Another representation of motions in liquids and solids involves the memory 
functions of time-correlation functions C ( t ) .  This has been reviewed by Berne 
and c o - ~ o r k e r s . ~ ~ 5 ~ ~ ~ 8  It may be shown quite generally that C ( t )  obeys the equa- 
tion 

where Ko(T) is the memory function of C ( t ) ,  and is a real even function of time. 
The r.h.s. of equation (50) is a convolution of KO with C. With the aid of the 
convolution theoremfi1 and equation (30), Fourier transformation of equation 
(50) gives 

The memory function Ko(t) is one of a family" of memory functions Kn(t)  which 
obey the set of coupled equations2 

From equation (52) we have 

Repeated use of equation (53), for different values of n, in equation (51) yields 
the continued-fraction representation of time-correlation functions : 

C(0) 
iw + K,,(O) S [ C ( t ) ]  = 

iw + K,(O) (54) 
iw + . . . . . . . . Kn-,(0) 

iw + 9 [ K n ( r ) ]  

If the nth order memory function has a white spectrum so that 9 [ K n ( t )  J = pn 
where pn is a constant, then the series in equation (54) is truncated. This may be 
used as a starting assumption from which C ( t )  and F [ C ( t ) ]  may be obtained. 
Alternatively the series may be truncated using an assumed form for a particular 
Kn(t) .  Berne2J7y5B and more recently Evans and Daviess4 have discussed the use 
of empirical forms for certain memory functions. Evans and co-workers 
(e.g. refs. 52-54 and refs. therein) have fitted far-i.r. absorptions a(w) for a 
variety of liquids, liquid crystals, and rotator-phase solids by assuming 
K l ( t )  = Kl(O)exp( --ylt), t > 0, which from equation (54) gives 

K,(O) - w 2  - i w y ,  
nK,(O) + i w 3  - w 2 y 1  - iw[K,(O) + KO(0)l .F[C(t)J = ( 5 5 )  

*Note: For motion governed by the modified Langevin equation (see ref. 2, p.  609), 
K,(t) = (F(O)*F(t)), the correlation function of the random force F. 
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Now a(o)  is related to F [ C ( t ) ]  via equations (28)  and (33)  so a(w) may be 
expressed a ~ ~ a l y t i c a I l y ~ ~ - ~ ~  in terms of three quantities, Ko(O), Kl(O), and 7 1 ,  

where Ko(0) is just (2kTI I )  for a diatomic molecule. In general these may be 
regarded as parameters to be determined by fitting a ( o )  by a least mean squares 
procedure. Knowing Ko(O), Kl(O), and 71 both C ( t )  and E"(w) may be determined 
since they are analytically related to these quantities.S2-S4 We note that C ( t )  
thus obtained is even up to O(t4) and is a single exponential form at long times 
with relaxation time 

Thus the fitting of far-i.r. data with parameters (Ko(O), Kl(O), yl} gives a pre- 
diction of the lower-frequency dielectric relaxation behaviour of a given system. 
Ko(0) is a molecular property (e.g. 2/iT/I fcr a diatomic molecule) while 
Kl(0) = Ko(0) + (0( V ) 2 ) ,  where the latter quantity is the intermolecular mean- 
square torque. The continued-fraction approach, as used by Evans and co- 
workers, represents a valuable method for characterizing, in a quantitative 
manner, far-i.r. data for liquids and solids and appears to be highly successful 
in practice. 

G .  Interrelations between Time-correlation Functions and Orientational Distribu- 
tion Functions.-For the special case where the reorientation of a unit vector 
occurs with axial symmetry, on average, with respect to an arbitrarily chosen 
initial direction but does not necessarily follow the rotational diffusion equation, 
equations (24) and (27)  may be generalized to read 

m 

f ( Q , d  = 2 (2m + 1)  P d U )  $4) (57) 
m=O 

V n t 4 t ) l )  = $ n ( f >  ( 5 8 )  

$ o ( t )  = 1 ; $&), m # 1 are normalized decay functions, 0 d \t,brn(r) 1 d 1. Equa- 
tion (57) expresses the dynamics of orientation but experimental measurements 
which determine individual ( P n [ u ( t ) ] )  or their mixtures give only a part of 
f(J2,t). Given this situation, it is essential that experiments should be made 
which determine at least $l(t)  and # 2 ( t )  for a given system. A comparison of 
these in terms of assumed models for motion should rule out certain mechanisms 
and favour others. Alternatively if a computer simulation is possible $l ( t )  
and $2(r) should be evaluated for assumed forms of intermolecular potential and 
agreement sought with the experimental data. In practice few experimental 
determinations of both $ l ( t )  and $,(t) have been made, but examples are: 
(i) low-frequency motions in certain supercooled liquids using23981.82 dielectric 

M. S. Beevers, J. Crossley, D. C .  Garrington, and G.  Williams, J.C.S. Furaduy 11, 1977, 
73, 458. 
M. S. Beevers, J .  Crossley, D. C .  Garrington, and G.  Williams, Faraday Symposia Chem. 
SOC., 1976, No. 11. 
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relaxation [ $ ~ ( t )  ] and Kerr-effect relaxation [$2(t) ] and (ii) high-frequency 
motions in simple molecular liquids as obtained using5O i.r. [$ i ( t ) ]  and Raman 
[$z( t )  ] vibration-rotation spectra. At the present time most papers on molecular 
motion give results for a single experimental technique and interpretations are 
made with assumed models for motion involving adjustable parameters. It is 
hoped that this rather unsatisfactory situation will be remedied in future as a 
result of comparisons being made between the dynamics data (correlation 
function, correlation times) obtained using different techniques. 

We enquire whether there are inter-relations between the $n(t)  of equations (57) 
and (58). Berne and c o - w ~ r k e r s ~ ~ ~ ~ ~ ~ ~  have deduced approximate inter-relations 
which may apply independently of the detailed mechanism for motion. Using 
information theory and given that f ( Q , t )  is normalized and positive and that 
$ ~ ( t )  be known, they obtain 

where ,B(t) is a Lagrange undetermined multiplier and is evaluated at each value 
of t from equation (60) with n = 1. B,+$(P) = [7~/2/3]* In++(P),  where In+$(/$ 
is a modified spherical Bessel function of the first kind. The functions B,++(p) are 
given by Berne2 for different values of n. Thus if $ l ( t )  and hence P( t )  is known 
experimentally, # 2 ( t ) ,  #3(t), etc. are obtained from equation (60). Berne and 
co-workers2962 found that this method was successful for the test cases of 
‘molecular dynamics’ simulations of $q(t) and $2(f) for diatomic molecules and 
this led them to write62 ‘nature seems to prefer smooth distributions’. The ap- 
proach is especially useful for the ‘fast’ motions in systems of small molecules 
since it provides a link between the results of different experimental techniques. 
If, however, molecules move in a discontinuous manner, e.g.  jumps through 
large angles of arbitrary size as occur in site-model situations or for molecules 
moving slowly in the supercooled or highly viscous liquid ~tate,~398~-85 then the 
information-theory approach may not apply. Williams and co-workers23 have 
considered the ‘fluctuation-relaxation’ model (known in n.m.r. work as the 
‘strong-collision’ model) for which the molecule moves ‘instantly’ and randomizes 
completely when it suffers a fluctuation in its environment. This leads to t,hn(t) 
being equal for all n (n > 1) at <(t), where c ( t )  is a characteristic time function 
for the fluctuations. This contrasts with the information-theory approach 
where I,!Jn+l(t) decays faster than I,!Jn(t). Williams and co-workersz3 found 
t,!~l(t) 2: z/h(t) for several viscous liquids undergoing ‘slow’ ( t  > s) molecular 
motions, a result which is in accord with the ‘fluctuation-relaxation’ model 
but not with rotational diffusion [equation (27)] or with the predictions of 
information theory. 

83 G .  Williams in ref. 9, p. 151. 
84  G. Williams and P. J. Hains, Furuduy Symposia Chem. SOC., 1972, No. 6, p. 14. 
85 M. F. Shears, G. Williams, A. J.  Barlow, and J. Lamb, J.C.S. Furaduy 11, 1976, 70, 1783. 
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Clarkson and Williamss6 used the information-theory method of Berne and 
co-workers to deduce f (Q, t )  from a knowledge of $l(t). Using equations (59) 
and (60), i.e. for $ ~ ( t ) ,  gives p(t)  from equation (60), and this value is inserted 
into equation (59) to yieldf(G,t) at t. In addition they extended the analysis 
to the case where both $l(t) and $z(t) are known, and this introduces a further 
Lagrange undetermined multiplier, x say. They applied the first approximation 
[equations (59) and (60)] and the second approximation (involving p and x) 
to (i) classical rotational diffusion [equation (24) 3, (ii) computer simulations 
of motion in carbon monoxide by Berne and Harp,2157 and (iii) i.r. and Raman 
vibration-rotation data for $l(t)  and $z(t) for methane.87 They conclude that the 
first approximation yields quite satisfactory estimates of f (Q, t )  and there is no 
necessity in practice to use the extended analysis. Thus for suitable systems, 
and these include smal! molecules undergoing rapid reorientation ( t  < 10-10 s), 
it is possible to obtain good estimates of $ 2 ( t ) ,  $ 3 ( t ) ,  etc. and f (Q, t )  from a 
knowledge of $ ~ ( t ) .  

In the above we have considered the simple case of the reorientation of a vector, 
occurring with axial symmetry so thatf(Q,t) depends on 8 and t. For the general 
case of the orientation of three chosen molecular axes it is necessary to express 
the generalized orientation function in terms of spherical harmonics Ylm(O, 4) or 
Wigner rotation matrices D J ~ , ~ ( c l l , p , y ) ,  where a, p, and y are Euler angles. 
The corresponding time-correlation functions are considerably more complicated 
than those considered in this article and the reader is referred to Berne,2 Berne 
and P e ~ o r a , ~ ~  and Steeless for further accounts. 

3 Relationships between Time-correlation Functions and Experimentally Deter- 
mined Quantities 

A. Introduction.-The time-correlations considered above refer to the natural 
motions of a system in the absence of an applied field, but how may such motions 
be studied experimentally? Two approaches are particularly useful : (a) the 
response of the system to a weak perturbing field is measured in the time or 
frequency domains; or (b) the scattering behaviour of the system for monochro- 
matic incident radiation is studied in the time or frequency domains. For (a) if the 
applied field is sufficiently weak the time factors of the response are those 
due to the natural motions of the system in the absence of the field. For (6) if the 
energy and momentum changes involved in the scattering process are negligible 
(quasi-elastic scattering) then the autocorrelation function for the amplitude 
of the scattered radiation or its power spectrum will simply correspond to a 
modulation of the frequency of the incident radiation caused by the natural 
motions of the scatterers. In order to see how relations between experimentally 
determined quantities and field-free time-correlation functions may arise we 
consider simple examples illustrating (a)  and (b) above. 

88 T. S. Clarkson and G. Williams, J.C.S. Furuduy ZZ, 1974, 70, 1705. 
R. G. Gordon, J .  Chem. Phys., 1965, 43, 1307. 
W. A. Steele, J. Chem. Phys., 1963, 38, 241 1. 
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B. Quasi-elastic Light Scattering from Moving Point Scatterers.-Of the accounts 
of the dynamic scattering of monochromatic light (see e.g. refs. 2, 35-41, 
and 89) those of Cummins and co-workers35 and Peticolas37 are particularly 
valuable for the special case of a stationary system of point scatterers which 
undergo translational motions. Consider the situation (Figure 3) where a parallel 

Detector R away from 0 I 
Figure 3 Quasi-elastic light scattering from point scatterers indicating the relation between 
k, kz, and ks 

beam of plane-polarized monochromatic radiation (light say) of angular 
frequencyoo and associated wave-vector kx = [2nn/h0]uz, where ux is the unit 
vector in the propagation direction, is scattered from a volume of material 
containing N equivalent point scatterers (atoms, molecules). The beam is taken 
to be polarized parallel to the y-axis and the scattered radiation for a scattering 
angle 8 is detected at the macroscopic distance R from the origin 0 of Figure 3.  
The scattering direction is denoted by the unit vector us and the wave-vector 
of this scattered radiation ks = [2nn/ho]us, where Ikz I 2 Iks I for quasi-elastic 
scattering. The incident radiation is in phase at plane I but the scattered radiation 
reaching the detector is composed of a superposition of waves of different phase 
since they have travelled different distances from plane I via the scatterers to the 
detector. If the scattering amplitude factor A is assumed to be independent of the 
orientation of the scatterers and of time then the amplitude Ej(k,T) of the light 
scattered from a scatterer j ,  say, which is located at Y ~ ( T )  from the origin at the 

. arbitrary time T is given by37 

E&T) = Aexp { - i [ w , ~  - (277/Xo) D~(T)]} (61) 

Q(T) is the distance travelled by the light from plane I to thejth particle and then 
to the detector. Geometrical considerations (e.g. see ref. 37) show that 
Q(T) = [R + u~(T)-(u~ - us)] so equation (61) may be written as 

Ej(k,~) = Aexp (-i[w,T - k . r j ( ~ )  - k s .  R ] )  (62) 

where k = (kz - ks)  and is the scattering vector. For quasi-elastic scattering kz ,  

P. N. Pusey and M. F. Vaughan, in ref. 9, p. 48. 
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k,, and k form an isosceles triangle with Ik I = 2 Iks lsin(8/2). The total scattering 
amplitude Es(k,7) is the sum of contributions from the N scatterers in the 
scattering volume : 

N 

E , ( ~ , T )  = K C e x p i -  i[woT - k.rj(7) - ~ ~ . R I I  
j =  1 

The average intensity of scattered light in the s-direction is 

(I) = (Es*(k,7)Es(k,7)) 

where * indicates the complex conjugate and ( )  indicates a time-average 
(over all 7). If the scatterers are statistically independent, i.e. there is no correla- 
tion between the position or the motion between scatterers, then all cross- 
correlation terms in (I), i.e. (exp { - ik. [rj(7) - Y2(7)]}), I # j ,  are zero, giving 
(I) = NA2,  the equilibrium result. The temporal behaviour of the scattered-light 
intensity is obtained from 

j =  1 
N 2 (exp - i [wo( t  + - !k.rz(t + .>I 1 ) 

I= 1 
= NA [exp( - iw,t)]F(k,t) 

where F(k, t )  is a correlation function 
N N 

j =  1 I= 1 

F(k, t )  contains auto- ( j  = I )  and cross- ( j  # I )  correlation functions, and the 
autocorrelation terms have been introduced above in equation (6). 

Experimentally G(l ) (k , t )  is not measured directly. In the time domain 
(photon-correlation ~pectroscopy35-~1~~9) the measured quantity is the normalized 
intensity correlation function for the scattered radiation, g(2 ) (k , t ) ,  which is 
defined as gc2)(k,t)  = (Es*(k,7)Es(k,7)Es * [ k,( t  + 7 ) ] E s [ k , ( t  + ~ ) ] ) / ( 1 ) ~ .  This is 
related to g ( l ) ( k , t )  = C ( l ) ( k , t ) / ( l )  according to the Siegert relation :35-41989 

g(2) (k , t )  = 1 + /g(l)(k,t)j2 (66) 

Thus the measurement of g(2)(k,t) gives g(l)(k,t) and hence F(k, t ) .  For the special 
case of statistically independent scatterers F(k , t )  becomes F,(k,t) of equation (6). 
In general the cross-correlation functions (exp { - ik - [ r j ( ~ )  - rl(t + ~ ) ] } ) , j  # I ,  
will make a contribution to F ( k , t )  and hence G(l ) (k , t ) .  

In the frequency domain the spectrum I ( k , o )  of the scattered radiation is 
given by the Wiener-Khintchine relation35-41J39 
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(67) 
1 m  

2r --m 
I (k ,w)  = - 1 I G(')(k,t)  I exp(iwt)dt 

Use of equations (64) and (67) for statistically independent scatterers gives 
equation (9) above. In general from equations (64) and (67) we have 

I(k,w) = - IVA2 I rn  exp[+ i (w  - w,)t]F(k, t )dt  (68) 2r  - m  

Equations (64), (66), and (68) show how experimentally determined quantities 
G(')(k,t) and I(k,w) are related to a correlation function F(k, t )  which expresses 
the natural motions of the scatterers. In equations (64) and (68) the incident 
field factor involving 00 and the correlation function F(k, t )  appear as a product. 
In equation (64) this means that the motions of the scatterers lead to a modula- 
tion, through F(k, t ) ,  of the single frequency WO. In the power spectrum equation 
(68), this leads to a k-dependent broadening of the scattered-line, centred on WO. 

Note that F(k, t )  is obtained from equation (64) in the time domain, while in the 
frequency domain it may be obtained from the Fourier inverse of equation (68). 
We considered the simple case of moving point scatterers to illustrate how experi- 
mentally determined quantities in scattering experiments may be related to 
certain time-correlation functions. There are many mechanisms for polarized 
and depolarized light-scattering from liquids and solids and many of these are 
considered in detail in the texts by Chu40 and Pecora and Berne.41 The develop- 
ment of the subject owes much to the work of Benedek, Cummins, Pecora, and 
Pike and the dynamic light-scattering techniques have been successfully applied 
to studies of the motions of small m o l e c ~ l e s , 3 ~ - ~ ~ ~ 6 3 ~ 9 0 ~ ~ ~  of macro- 
molecules,35-41~~9~92-95 of macromolecular gels,96 and of structured solutions97 
and to very low-frequency motions in pure l i q ~ i d s . ~ ~ - ~ O ~  

C. Dielectric Permittivity and Dipole Reorientation.-As an example of how 
experimentally determined quantities may relate to time-correlation functions 
for the case where a system is perturbed by a weak applied field, we consider the 
permittivity of a dipolar medium. The theory of dielectric relaxation is well 
documented4-11.71 but is made complicated by local-field considerations. For 
detailed accounts the reader is referred to texts4-6 and reviews,7-9 and for 

91 G. R. Alms, D .  R. Bauer, J. I. Braumann, and R. Pecora, J. Chem. Phys., (a) 1973, 58, 

sa R. Pecora, Discuss. Furaday Soc., 1970, No. 49, p. 222. 
93 T. A.  King, A. Knox, W. I. Lee, and J.  D .  G .  McAdam, Polymer, (a)  1973,14,151; (b) 1973, 

9rT. A. King, A. Knox, and J. D .  G .  McAdam, Chem. Phys. Letters, 1973, 19, 351. 
95 P. N. Pusey, J. M. Vaughan, and G .  Williams, J.C.S. Faraday ZI, 1974, 70, 1698. 
96  T. Tanaka, L. 0. Hocker, and G. B. Benedeck, J. Chem. Phys., 1973, 59, 5151. 
97 5. C. Brown, P. N. Pusey, J.  W. Goodwin, and R. H. Ottewill, J. Phys. (A), 1975, 8, 664. 
98 C. Demoulin, C. 5. Montrose, and N. Ostrowsky, Phys. Rev. (A), 1974, 9, 1740. 
9 9  C. Demoulin, P. Lallemand, and N. Ostrowsky, Mol. Phys., 1976, 31, 581. 

loo C. C. Lai, P. B. Macedo, and C. J. Montrose, J. Amer. Ceram. SOC., 1975, 58, 120. 
lol J. F. Dill, P. W. Drake, and T. A. Litovitz, Amer. SOC. Lubrication Engineers Trans., 

loa P. W. Drake and R. Meister, J. Phys. Chem., 1976, 80, 2780. 

D. A. Pinnow, S. J. Candau, and T. A. Litovitz, J .  Chem. Phys., 1968, 49, 347. 

5570; (b) 1973,59, 5310; (c)  1973,59,5321; ( d )  1974,61,2255; (e)  1975,63, 53. 

14, 1. 

1975, 18, 202. 
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assessments of the current situation to the papers of Deutch and co-~orkers.~0~J0* 
Our derivations here follow closely those of GlarumlO and Cole.34 Consider a 
system of N equivalent dipolar molecules to which is applied a field EMZ(t’). The 
local field acting on the molecules is Ez(t‘) say, and will be related to EMp(t’). 
For the simple case of a medium of low permittivity, i.e. EO 21 E , ,  

The phase-space distribution functionf(p,q) for N equivalent dipolar molecules 
depends indirectly on time owing to the motions of the molecules and obeys the 
Liouville equation of m ~ t i o n , ~ J ~  

Ez(t’) N EMz(t’) [(E, + 2)/3]. 

N 

H is the Hamiltonian of the system, i refers to molecule i, a n d 9  is the Liouville 
operator: 9f = ( L H )  = - (H,f}, where { } indicates the Poisson bracket. 
If the uniform electric field Ez(t) is applied to the specimen, 

H(a,q; t )  = ffo(a,q) - Mc(dEc(t1 (70) 

where -Mz(q)E(t) = - 2 rni(q).EZ(t) is the energy of interaction between the 
dipole momentsand the field. We write 9’ = 90 + 91 and, noting that Mz(q) is 
independent of momenta pi, 

N 

N 

Writing f = fo + f1, from equations (69)-(71) we have 

2 0  = - Lzofo;afi = - [.=POf1 + 21fo] (72% b) at at 

91f1 is omitted in equation (72b) in order that f1 = Q(Ez). This is the ‘linear- 
response’ condition that the change fromfo to (fo + f1) is linear in the applied 
field Ez. The solution to equation (72a) is the field-free Boltzmann relation 

fo = AexP(- BHO) (73) 

where /3 = (kT)-1 and A is a constant. Writing fi = [exp(-t9’0)]yl, then 
differentiation and comparison with equation (72b) gives 

_ -  a” - - [ e x ~ ( t ~ ~ > l . = P ~ f o ;  A t )  = - I t  [ex~( t ’~~)W~fo fod t ’  (74a, b) at -03 

Hence 
lo3 U. M. Titulaer and J. M. Deutch, J. Chem. Phys., 1974, 60, 1502. 
lo4 D. E. Sullivan and J. M. Deutch, J. Chem. Phys., 1975, 62, 2130. 
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(75)  

The average moment in the field direction is 

= j j Mz(4)f(P,4; t )  dP dq 

From equations (71) and (73) 

since2 (aHo/api) = q i ,  and where lkz = dM,(t)/dt. Equations (76) and (77) give 

Using the series expansion 

exp[-(t - t’) 9,,1= 2 9 ( t  - t’)“ (79) 
n 

each term in the series expansion of equation (78) may be integrated by parts 
giving 

since integrals of the form 9 0 f 0  dp dq vanish. Equations (78) and (80) yield ss 
( M z ( r ) )  = /3 / ‘ dr‘ E(t’) jjfoAkz[exp(t - t’) yo] Mz(q) dp dq 

The operator exp(t - t’)Yo is a tirne-displacement operator, or propagat0r.~7~~9*~ 
When it operates on A it transforms it from its value at time t‘ to the value it  has 
at ( t  - t’) later, the change having resuited from the natural motions of the 
system. Equation (81) becomes 

(81) 
- K  

We define a field-free correlation function !&(t) as 

@Z(f> = j1f ,Mz(O)Mz(t)  dp dq = <Mz(0)MZ(t)) (83) 

Now 

ddt) = ( M z ( O ) M r ( t ) )  = - ( M Z ( O ) Z M Z ( t ) )  , 

so equations (82) and (83) give the superposition integral 
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<Mz(~)> = - ,B I t  -cc Ez(~’) &Z(t - t’)dt’ (84) 

The total dipole moment correlationfunction@(t) = (M(O).M(t))/(M(O) .M(O)), 
where M ( t )  = M z ( ~ ) u z  + My(t )uy  + Mz(t)uz and ux, uy, and uz are the unit 
vectors associated with the x ,  y ,  and t directions. Now @ ( t )  = 3QZ(t)/(M(O). 
M(O)), so equation (84)’may be written as 

This is our general result for the linear-response condition. Three forms of 
Ez(t’) are of interest. 

(i) EO applied as a step at t’ = 0: 

(ii) EO applied at t = -GO is removed as a step at t’ = 0 

(iii) Steady state: E(t‘)  = Eoexp(iwt’); - cc < t < ao: 

- - (M(o~$(o)) Eo exp(iwt) [l - iw 1 @(t’) exp( -iwt’) dt’] 
0 

Since the electric polarization PZ(t )  = N ( M z ( t ) )  = ( E  - E , ) E ~ K E ~ ,  where eV is 
the permittivity of free space and K is the internal field factor connecting the 
applied and local fields, we see that the time-dependent permittivity is propor- 
tional to [l - @(t)] and @(t )  for equations (86a and b) respectively. In the 
frequency domain from equation (86c) we write 

where 9 indicates the one-sided Fourier transform. For the simple case of a 
very dilute system of dipoles, EO 2 E, and hence ~ ( w )  2: ~ ( 0 ) .  Equation (87) 
becomes for this special case 

For the case where @(t )  = exp [ - ( t / T ) ] ,  equation (88) gives the familiar single- 
relaxation time expression [cf. equation (29) ]. 

Equations (86) connect the transient experiments [equations (86a and b)] 
to the steady-state a.c. experiments [equation (86c)], one being related to the 
other by a Fourier transform of @(t).  

Equations (85) and (86) are the important results of the linear response theory. 
The moment (Mz(t)> is proportional to the applied field and the proportionality 
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factor, a susceptibility, is determined by the equilibrium quantity (M(0) * M(0))l 
(3kT) and a time-correlation function @(t), where @ ( I )  is determined by the 
natural (field-free) motions of the system. 

Note @ ( t )  contains auto- and cross-correlation functions : 
N N N N  

- Z J  
<[C P@)l * [C W(t)l> z: 2 <P@) Fk)) 

<rc P 4 0 l  * rg: P.(O)l> 

I (89) - @ ( t )  = N‘ N z” $ <Iri(O) P5(0)) 
Z J  

For the special case where cross-correlation functions (pi(O)*pj(f)), i # j ,  are 
zero, then for equivalent molecules @(t) = (pi(O).pt(t))/(pi2) = (PI [ ~ ( t ) ] ) ,  
introduced and discussed above. 

4 Experimental Determinations of Time-correlation Functions 

A. Introduction.-Table 1 indicates the various time-correlation functions which 
are involved in the different experimental techniques, and the reader is referred 
to the key references given in the Table for detailed accounts. In this section 
we briefly consider certain of the techniques listed in the Table and give examples 
of results involving time-correlation functions. No attempt is made to give a 
comprehensive account since that is beyond the scope of this introductory re- 
view. However, comment is made, where appropriate, on the difficulties which 
may arise for the deduction of time-correlation functions from experimental 
data. 

B. Dielectric Relaxation.-Much of the dielectrics l i t e r a t ~ r e ~ - ~  for liquids and 
solids gives E(O) = E’(w) - id’(w) at a limited number of frequencies and such 
data are usually fitted by a single relaxation time expression or by a function 
involving a suitably chosen distribution of relaxation times, implying an orienta- 
tional correlation function which is exponential or a weighted sum of exponentials 
in time. As examples where the experimental data have been transformed to give 
experimental orientational correlation functions we choose to refer to part of the 
work of Evans and ~o-workers52-5*~56~~05 on the short-time, high-frequency 
motions of liquids, liquid crystals and rotator-phase solids, and to the work of 
Williams and co-workers13~81-85 on the long-time, low-frequency motions of 
supercooled and other viscous molecular liquids and of solid amorphous 
polymers. 

Evans and co-workers have deduced (PI [ u ( t ) ] )  or (b1 [ u ( t ) ] )  for (i) 2-methyl-2- 
nitropropane, 2,2-dichloropropane, 2-chloro-2-nitropropane, and t-butyl chlor- 
ide in their liquid and rotator-phase solid (ii) water in non-polar 
organic solvents,l05 and (iii) 4-cyano-4-n-heptylbiphenyl in its nematic and 
isotropic states.56 For these systems the far4.r. absorption a(o)  is fitted using 
the parameters Ko(O), Kl(O), and 71 of the memory-function approach outlined 
above (Section 2F), and hence (PI [ ~ ( t ) ] )  and/or (PI [ u ( t ) ] )  is determined. In all 

lob M Evans, J.C.S. Faraday 11, 1976, 72, 21 38. 
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cases the short-time behaviour of the correlation function resembles that of a 
free rotator (or a librator for the liquid-crystal case) and at longer times the 
influence of molecular collisions is seen. As one example, Figure 4 shows a(w) 
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Nps 
Figure 4 (a) Infrared absorption coeficient a ( W )  against wavenumber (cm-l) for an 
0.01 1 % wlw solution of water in cyclohexune at 296 K, corrected for solvent absorption. 
(b) (;P,[u(t)]> calculated from the data of Figure 4 (a). (c) The normalized memory- 
function K,(t)  calculated from the data of Figure 4 (a). 
(Reproduced from J. C.S. Faraday ZI, 1976, 72, 2 138) 

for water in cyclohexane together with the derived ( P l [ u ( t ) ] )  and its memory 
function Ko(t). Note the short time-scale for the reorientation process of H2O 
in this system. 

The dielectric relaxations of viscous molecular liquids and solid polymers may 
occur in the range 10-4-106 Hz, and are characterized by loss curves which are 
asymmetric in shape and are far broader than that for a single relaxation time 
process. As one example, Figure 5 shows E”(w) data, in normalized form, for 
anthrone in o-terphenyl in the supercooled liquid state84 together with the 
derived (PI [u( t ) ] )  obtained using equation (35). These data are well fitted by the 
empirical relation of Williams and Wat t~ ,~069~0~  &t) = exp [ - ( t / ~ ~ ) f j ] ,  with 

= 0.55. Such a relation with p = 0.55 is numerically very similar to a relaxation 

lo6 G. Williams and D. C. Watts, Trans. Faraduy Soc., 1970, 66, 80. 
lo’ G. Williams, D. C. Watts, S. B. Dev, and A. M. North, Trans. Furuduy SOC., 1971, 67, 

1323. 
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Figure 5 (a) Normalized dielectric-loss factor ( C " / E ~ )  against log( f /  fm)  for anthrone in 
o-terphenyl in the supercooled liquid state. The dashed curve (- - - -) is calculated using 
the Williams-Watts relation with is = 0.55. (b) (P , [u ( t ) ]>  calculated from the data of 
Figure 5 (a). experimental data: continuous curve (-) calculated with B = 0.55;  
arrowed curve (-+ +) single relaxation-time process 
(Reproduced from Faraday Symposia Chem. SOC., 1972, No. 6, p. 14) 

function deduced by Phillips and co-workersl08 for the model of relaxation 
in which a molecule moves as a result of the 'defect-diffusion' of nearest and 
next-nearest neighbour 'defects' in the liquid state. For solid amorphous polymers 

lo8 M. C. Phillips, A. J .  Barlow, and J. Lamb, Proc. Roy. Suc., 1972, A329, 193. 
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the form of the dielectric a relaxation process6 is found13J33J09 to be very similar 
to that in small-molecule glass-forming systems and this implies that the time- 
dependence of @(t ) ,  equation (89), for polymers is quite similar to the auto- 
correlation function (PI [u(t)  ]) for dipoles in highly viscous molecular liquids. 
It has been reasoned109 that this means that the dipole moment auto- and cross- 
correlation functions have the same time-dependence in solid amorphous 
polymers, owing to the co-operative nature of the a-process. 

C. Kerr-effect Relaxation.-Dynamic Kerr-effect experiments involve the 
measurement of the optical birefringence, dn, of a material subjected to a 
directing electric field.19-2*~81982~110 Experiments may be conducted in the 
frequency or time domains and although most studies have been made in the 
range 10-2-107 Hz, measurements have recently been made on liquids in the 
5 4 0  ps range111J12 using picosecond laser techniques. Beevers and co-workers23 
have shown for the simple case of axially symmetrical molecules of dipole 
moment p and polarizability anisotropy A g  that the decay-transient for A n  
following the step-withdrawal of a directing electric field is characterized by 
( P z [ u ( t ) ] ) ,  where u = cosB and 8 is the angle of reorientation of the dipole 
vector. Since the Kerr effect is a non-linear optical effect (An  cc E2), the rise 
transient for a step-applied directing electric field may be very different from 
the decay transient, this being so for the case where the molecule moves by 
rotational diffusion.19~23 As one example of (P2 [ ~ ( t ) ] )  being obtained from 
Kerr-effect experiments, we refer to the work of Benoitlg and of O’Konski 
and co-workers20S2l for tobacco-mosaic virus in aqueous media, where they 
observed rise and decay transients which are a direct measure of 

(Pz  [u(t) I) = exp( - 6&t) 

for the rotational diffusion of this eIIipsoidal macromolecule (rod 3000 A x 180 A 
diameter35). For this system the rise and decay transients are symmetrical, both 
giving ( P ~ [ u ( t ) ] ) ,  since the Kerr-effect arises in this case from the induced 
moment of the molecule. Transient data for dipolar macromolecules, involving 
(PI [u ( t ) ] )  and (Pz  [u ( t ) ] ) ,  are reviewed by Fredericq and Houssier22 while 
recent studies include those by Beevers and co-workers110 for poly-n-alkyl 
isocyanates in non-polar solvents. As a further example of this technique, 
Figure 6 shows the normalized birefringence transients for fluorenone in 
o-terphenyl in the supercooled liquid state.82 The rise and decay transients are 
symmetrical at each temperature and correspond to (1 - ( P ~ [ u ( t ) ] ) )  and 
(P2 [u ( t ) ] ) ,  respectively, for the reorientation of the dipole vector of fluorenone. 
P2( [u ( t ) ] )  is far removed from a single exponential decay in time, ruling out 
rotational diffusion, but is adequately represented by the Williams-Watts 
function with fj 21 0.6. Dielectric measurements on the same systems2 yield 

lo@ G. Williams, M. Cook, and P. J. Hains, J.C.S. Faraday 11, 1972, 68, 1045. 
M. S. Beevers, D .  C. Garrington, and G. Williams, Polymer, 1977, 18, 540. 

ll1 M. Duguay and J .  Hansen, Appl. Phys. Letters, 1969, 15, 192; Opt. Comm., 1969, 1, 254. 
n2 P. P. Ho, W. Yu, and R. R. Alfano, Chem. Phys. Letters, 1976, 37, 91. 
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Figure 6 Normalized birefringence against time for 22.5 % fluorenone in o-terphenyl 
in the supercooled liquid state. Curves 1 ,  2, 3, and 4 refer to 259.6, 246.9, 241.2, and 
239.9 K respectively 
(Reproduced from Faraday Symposia Chem. Soc., 1976, No. 11)  

( P ~ [ u ( t ) ] ) ,  which is found to have the same time-dependence and the same 
average relaxation time as the Kerr-effect relaxation at each given temperature. 
These results are consistent82 with the ‘fluctuation-relaxation’ modeI23 discussed 
above (Section 2G). 

Note that the interpretation of Kerr-effect relaxations may be made compli- 
cated by cross-correlation terms,113 as is the case for dielectric relaxation. 
It seems likely that in liquid-crystal forming systems, both in their liquid-crystal 
and isotropic phases, equilibrium and dynamic cross-correlation terms make a 
substantial contribution to equilibrium and dynamic Kerr-effect q~antit ies. l l4-I~~ 
Cross-correlations are also of importance for the Kerr-effect of alcohols118 
(intermolecular correlations) and of dipolar polymersllg (intramolecular 
correlations). 

D. Depolarization of Fluorescence.-The steady-state and time-dependent 
fluorescence depolarization of fluorophores incorporated into macromolecules 
has been ~hown26-309~~ to be a useful method of studying the rotational motions 
of macromolecules. ( P z [ u ( t ) ] )  for the reorientation of the axis of the transition 
moment of a fluorophore may be obtained in favourable cases from measure- 

113 s. Kielich, in ref. 8, p. 192. 
114 M. S. Beevers, Mol. Crystals Liquid Crystals, 1975, 31, 333. 
116 H. J. Coles and B. R. Jennings, Mol. Phys., 1976, 31, 571. 

11’ T. D. Gierke and W. H. Flygare, J .  Chew. Phys., 1974, 61, 2231. 
118 C. G. LeFevre and R. J. W. LeFevre, Rev. Pure Appl. Chem., 1955, 5, 261. 
llS K. Nagai and T. Ishikawa, J.  Chem. Phys., 1965, 43, 4508. 

M. S. Beevers and G. Williams, J.C.S. Faraday ZZ, 1976, 72, 2171. 
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ments of the components l l l( t)  and I l ( t )  for the intensity of fluorescence which 
emerges from a sample following its irradiation with a fast pulse of (vertically) 
polarized light. The time-dependent depolarization ratio (or emission aniso- 
tropy), r ( t )  is defined as 

If xu and X e  are unit vectors along the direction of the absorption and emission 
transition dipole moments respectively, then,41 r ( t )  = (2/1 5)<P2 [xa(0) .xe( t )  1). If 
xu and X e  are parallel then r ( t )  = (2 /15 ) (P2[u( r ) ] ) .  Experimentally, the range 
of the technique is limited to f < 10-8 s by the lifetimes of the fluorophores, and 
to t > 10-lO s by instrumental factors. As examples we refer to the work of 
Monnerie and c o - w o r k e r ~ ~ ~ ~ ~ ~  for fluorophores contained in flexible polymer 
chains. Figure 7 shows r ( t )  for anthracene units contained in polystyrene 

for solvent mixtures of different viscosity. The data are not accurate at short 
times owing to the problem of deconvolution of the pulse excitation and 
fluorescence functions. Valeur and M ~ n n e r i e ~ ~  have fitted these data with a 
model for chain motion120.121 which gives, for a bond in the chain, 

lao B. Valeur, L. Monnerie, and J. P. Jarry,  J .  Polymer Sci., Polymer Letters, 1975, 13, 667, 
675. 

121 E. Duboise-Violette, F. Geny, L. Monnerie, and 0. Parodi, J.  Chim. phys., 1969, 66, 1865. 
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v z  [4 t ) l>  = CexP(- t/a)l [exp(t/p)l erfdt/p)* 

where p is a characteristic time for jumps on a tetrahedral lattice and u is a 
relaxation time for random fluctuations of the direction of the co-ordinates 
which define the lattice. Valeur and Monnerie30 have also examined the effects 
of quenching agents on the observed r ( t )  for fluorophore/polystyrene in 
1,2-dichloroethane and chloroform as solvent. 

(91) 

E. Nuclear Magnetic Resonance.-N.m.r. studies, involving the spin-lattice 
relaxation time TI,  the spin-spin relaxation time 7'2, the rotating frame relaxation 
time TI,,, and line-broadening techniques, have been very successful in character- 
izing molecular motions in liquids and solids. Key references are to Abragam,31 
Slichter,32 P O W ~ ~ S , ~ ~ ~  Waugh,lZ4 and C0le.3~ Experimentally, 
n.m.r. studies are commonly and conveniently carried out at a fixed resonance 
frequency wo and over a range of temperature. Although such measurements 
may give information on average correlation times for molecular motion, they 
do not allow the form of the various spherical harmonic correlation functions 
which are i n ~ o l v e d 3 ~ 9 ~ ~ 5  to be obtained without making assumptions regarding 
the mechanism for motion and/or its dependence on temperature. The difficulties 
arising from measurements made at a single frequency may be illustrated with the 
model of two equivalent nuclear dipoles, of gyromagnetic ratio YN and spin 
quantum number IN, separated by an internuclear vector r of fixed length. The 
spin-lattice relaxation time TI is given by31~3~9125 

where, in general, J1 and JZ are Fourier transforms of time-correlation functions 
of second-order spherical harmonics Yrn,( e,$) describing the reorientation of r .  
For the special case where the reorientation occurs with axial symmetry from 
any initial orientation of Y, the $-dependence goes out and J I  and J2 become 
Fourier transforms of ( P z [ u ( t ) ] ) ,  where u = c o d  and 8 ( t )  is the angle between 
r(0) and r ( t ) .  Assuming ( P z  [u( t ) ]> = exp( - f / 7 2 ) ,  equation (92) 

From equation (92) it is clear that the form of the correlation functions cannot 
be obtained from TI measurements at a fixed WO. Equation (93) is only applicable 
if (P2[u(f)]) is exponential in time which, for most solid polymers or viscous 
liquids, is not the case.32,337122 

F. Quasi-elastic Light Scattering.-Owing to the wide frequency range, the 

lz2 T. M. Connor, Trans. Furuduy Soc., 1964, 60, 1574. 
lZ3 J.  G .  Powles, Polymer, 1960, 1, 219. 

J. S. Waugh, in 'Molecular Relaxation Processes', Chemical Society Special Publication 
No. 20, The Chemical Society and Academic Press, London, 1966. 

lZ5 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev., 1948, 73, 679. 
lZ6 R. Kubo and K. Tomita, J .  Phys. SOC. (Japan), 1954, 9, 888. 
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alternatives of polarized and depolarized scattering, and the wide application 
to systems of chemical and biochemical interest, dynamic quasi-elastic laser 
light-scattering has emerged as one of the most used techniques for studies 
of the motions of molecules and larger species. The reader is referred to 
reviews,35-39, texts,40941 and key papers90-97 where many examples of experi- 
mental time-correlation functions for molecular motion are given. For the 
purposes of this review we refer to only a few examples taken from photon- 
correlation and frequency-domain (Rayleigh line-broadening) experiments. 

Of the many studies of the diffusion of macromolecules in solution using 
photon-correlation methods35-41192-95~127 we refer to the work of Pusey and 
co-workers89~95~12~ and of King and co-workersg3-95 on monodisperse poly- 
styrenes of different molecular weight in several solvents. Their data for polarized 
scattering are entirely consistent with translational diffusion, equations (4) 
and (8), and Dt values are obtained with good precision. In such studies the 
polymer molecules are of smaller dimension than the wavelength A0 of the incident 
light. For molecules whose dimension is comparable with, or greater than, XO 
modes of motion additional to centre-of-mass (c.0.m.) motion may contribute 
to G(l)(k,t) and I ( k , o ) .  For a rod-like macromolecule of length I, if the c.0.m. 
motion and rotation about the c.0.m. are uncoupled and obey simple transla- 
tional diffusion and rotational diffusion, then359128 

m=O 
m even 

m=O 
m even 

where B m  = (2m + 1 )  - Jm(y)dy/y , h = k1/2, and Jm(y )  is a spherical [:I: l 2  
Bessel function of y (see ref. 60, p. 407). The integral arises from the summation 
of scattering elements along the rod. L m ( * )  denotes a Lorentzian of a given m 
centred on 00 [see equation (lo)]. In practice only the first two terms in each 
series, of relative magnitude 930 : 932, are significant. Thus equation (94) 
involves two weighted exponential decays and equation (95) involves two 
Lorentzians where the variation with k suffices to determine Dt and Dr. This 
was used by Cummins and co-workers35 and King and co-worke1s9~ for tobacco- 
mosaic virus in aqueous solution, yielding35 Dt = 2.8 x cm2 s-l and 
Dr = 320 s-1. King and co-workers94 and Frederick and c ~ - w o r k e r s ~ ~ ~ - ~ ~ ~  
have interpreted deviations from simple translational diffusion behaviour for 

12' P. N. Pusey, in ref. 39, p. 387-428. 
lZ8 R. Pecora, J. Chem. Phys., 1964, 40, 1604. 
lZ9 T. F. Reed and J. E. Frederick, Macromolecules, 1971, 4, 72.  
130 0. Kramer and J. E. Frederick, Macromolecules, 1972, 5, 69. 
131 W. N. Huang and J .  E. Frederick, Macromolecules, 1974, 7, 34. 

125 



Time- corr ela tion Functions and Mo Iecular Motion 

very high molecular weight polystyrenes in cyclohexane and butanone in terms 
of Rouse-Zimm-type internal relaxation modes41 for these spherical macro- 
molecules. 

The equilibrium and dynamic correlations for charged polystyrene spheres 
(radius - 250A) in dilute aqueous dispersion have been studied by Brown and 
co-workersg7 using conventional and photon-correlation light-scattering methods. 
( I ) ,  when plotted as a function of scattering angle, exhibited maxima which 
could be interpreted in terms of a definite structure for the medium, and the 
derived radial distribution function indicated short-range ordering due to repuls- 
ive Coulombic interactions. G(l) (k , t )  results were non-exponential in time, but 
the short-time behaviour gave an effective diffusion coefficient L)t(k) which was 
k-dependent in a manner which exactly paralleled the k-dependence of the 
equilibrium structure factor S ( k ) .  Brown and co-workers give theoretical support 
to this result. The motion is similar to that of a particle in a well. At short times 
it moves in free translational motion [equation (4)]. At longer times the particles 
move collectively and these motions are influenced by interparticle interactions. 

The light-scattering arising from fluctuations associated with structural 
relaxation in pure liquids has been studied for glycerol9* and other viscous 
l i q ~ i d s . ~ ~ 0 - ~ 0 ~  Phenomenologically, the form of the time-dependence of g ( I ) ( k , t )  
is found to be similar to dielectric and viscoelastic relaxation functions for such 
media, being fitted with a Davidson-Cole function or Williams-Watts function. 
An interpretation of such scattering is given by Demoulin and co-workersgg 
and by Berne and Pecora4I in terms of generalized hydrodynamics. 

The fast reorientational motions of simple non-viscous molecular liquids 
may be studied by light-scattering methods in the frequency domain in terms of 
the width and shape of the depolarized Rayleigh-scattered line. Of the many 
recent studies we refer to the work of Pecora and co-workersg1 and of Litovitz 
and c o - ~ o r k e r s . ~ 3 ~ ~ ~ ~ ~ ~ ~ - ~ 3 5  For optically anisotropic molecules which possess 
cylindrical symmetry, the scattered light intensity for the depolarized spectrum 
is proportional to (gli - g1)2 where g is the optical molecular polarizability. 
The spectrum is given by a Fourier transform of correlation functions for trans- 
lational and reorientational modes of motion41991,92 but if it  is assumed (i) that 
the translational motions occur on a much longer time-scale than the reorienta- 
tional motions, so that Dk2 < 6Dr and (ii) that the reorientational motions 
follow the simple rotational diffusion model, equation (16), then the spectrum 
is a Lorentzian centred on wo with a half-width 6 0 ,  (independent of k and so 
independent of scattering angle). This approach has been applied very success- 
fully by Pecora and co-workersg1 to obtain rotational relaxation times rz for 
benzene, toluene, p-xylene, chloroform, nitrobenzene, and certain carboxylic 
acids in solvents composed of optically isotropic molecules (e.g. cc14). In this 

132 J. A. Bucaro and T. A. Litovitz, J .  Chern. Ph j . .~ . ,  (a )  1971, 54, 3846; (h) 1971, 55, 3585. 
133 C .  J. Montrose, 5. A. Bucaro, J. Marshall-Coakley, and  T. A. Litovitz, J .  Chern. Ph~.s., 1974, 

13' J 
135 H. Dardy, V. Volterra, and  T. A. Litovitz, Faraday Symposia Chern. Soc., 1972, No. 6, 

60, 5025. 
F. Dill, T. A. Litovitz, and J.  A.  Bucaro, J.  Chern. Plz,vs., 1975, 62, 3839. 

p. 71. 
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work it is assumed that <P2[u( t ) ] )  = exp(-6Drt), and since the lineshape is 
analysed in the ‘low-frequency, long-time’ region satisfactory results are achieved. 
Litovitz and co-workers63~135 have extended measurements of the depolarized 
Rayleigh spectrum of benzene into the high-frequency ‘wings’ in order to obtain 
information on (Pz  [ u ( r ) ] )  at short as well as at long times. Following corrections 
for the finite resolution of the spectrometer and, importantly, for an estimated 
collisional contribution to the spectrum, the Fourier inversion of the corrected 
spectrum yields63 (P2 [ ( r ) ] ) ,  as shown in Figure 8. At short times the correlation 
function is that for a free rotator (see Section 2D above) while at long times the 
correlation function is an exponential decay in time with a correlation (or rel- 
axation) time 7 2 .  The simple interpretation regards the benzene molecule as a 
symmetric top.413135 

t lps 

Figure 8 <Pz[u( t ) ! )  for liquid benzene at 293.5 K obtained from a Fourier inversion of the 
corrected depolarized scattered Rayleigh line; experiinental data, - - - A - - - calculated 
for a free rotator 
(.Reproduced by permission from J .  Chem. Phys., 1973, 59,4491) 

G .  Quasi-elastic Neutron Scattering.-In recent years there have been several 
publications describing quasi-elastic scattering of mono-energetic slow neutrons 
from solids and liquids for which molecular niotion plays an important part 
in determining the lineshape of the scattered neutron energy at a given scattering 
angle. The reader is referred to  review^^^-^^ and key papers45p46t136 for details of 
experiment and theory. The theory for quasi-elastic scattering from molecules 
capable of c.0.m. motion and rotation about the c.0.m. is quite similar to that for 
quasi-elastic light scattering,2~3514~~92 equation (99, and has been reviewed by 
White43144 and by Allen and H i g g i n ~ . ~ ~  The co-ordinate R for each molecule 
is expanded in terms of the c.0.m. co-ordinate and the (8,$) co-ordinates of the 

5 

136 Ref. 45, discussion therein pp. 165-168. 
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molecular axes. For a rigid molecule for which translational and reorientational 
modes of motion are uncoupled the incoherent scattering function S ( k , t )  may be 
written as a product of translational and rotational functions and for the case 
where translational diffusion occurs more rapidly than rotational diffusion, 
so that Dtk2 % D ,  the scattering cross-section is given by43945 

where b is the scattering length for incoherent scattering from the assumed 
equivalent nuclei. For the case where rotational diffusion is the primary cause of 
incoherent scattering, e.g. for a rotator-phase crysta1,43945 

a3 

which corresponds to a sum of Lorentzians centred on wo involving spherical 
Bessel functions Jm(kr), where r is the radius of gyration of the molecule. In 
general the observed scattering cross-section will be due to a convolution of 
translational and rotational contributions. For the rapid motions of small 
molecules, inertial effects will be important, as discussed above, and the assump- 
tions of simple translational diffusion and/or translational diffusion which lead 
to equations (96) and (97) may not be acceptable. 

Experimentally it appears difficult to obtain, with good accuracy, the 
material scattering function from the observed scattering function. This is 
due to several factors136 prominent among which are corrections for back- 
ground levels, multiple scattering from the sample-cell, and the deconvolution 
of the sample lineshape from that of the incident beam and the instrument itself. 
Consequently current interpretations have relied on assumed models for motion, 
equations (96) and (97), giving the transport coefficients Dt and Dr. For examples 
we refer to the work of Aldred and c o - ~ o r k e r s ~ ~  for Dt for liquid methanol and 
toluene and to that of Leadbetter and c o - ~ o r k e r s ~ ~  for Dr for rotator-phase 
solids of the substituted cyclohexanes C6FgH3 and C6F12. The fact that the quasi- 
elastic scattering spectrum in general involves a convolution of translational 
and reorientational modes of motion suggests that it would be highly desirable 
to make use of experimental data on time-correlation functions for translational 
motions, from tracer diffusion or n.m.r. experiments, and for reorientational 
motions, from microwave, dielectric, far-i.r. and Raman absorption, and pico- 
second Kerr-effect and depolarized laser-light scattering experiments, in order to 
obtain a consistent interpretation of motion in a given system. 

H. Infrared and Raman Vibration-Rotation Spectra.-The rotational broaden- 
ing of vibrational lines, as observed for i.r. and Raman vibrational spectra, 
may be interpreted2.47-56-137 for simple molecules possessing a degree of sym- 
metry in terms of correlation functions (PI [ u ( t ) ] )  and ( P z [ u ( t ) ] )  for the reorien- 

1 3 7  F. J. Bartoli and T. A. Litovitz, J .  Chem. Phys., (a) 1972, 56, 404; (b) 1972, 56, 413. 
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tation of particular molecular axes. It is recognized that many processes other than 
reorientation may contribute to the broadening of vibrational lines. Van 
Konynenberg and Steele51 have given a critical assessment of these and they 
include cross-correlation terms, vibrational relaxation, isotope effects, ‘hot-bands’, 
and collision-induced processes. As one example of the use of vibration-rotation 
spectra for the evaluation of ( P ~ [ u ( t ) ] )  and ( P z [ u ( t ) ] )  we refer to the work of 
Rothschild and co-workers50 on the i.r. and Raman spectra of CHC13, CDC13, 
and isotopically pure CH35C13. Figure 9 shows the time-correlation functions 

for reorientational motion of the C3 symmetry axis. The correlation functions 
have zero slope at t = 0 (i.e. they are even functions of time), resemble a classical 
symmetric-top free rotator at short times, and become exponential in time at 
long times. Also (Pz  [ u ( t ) ] )  decays faster than (PI [ ~ ( t ) ] )  which is expected for 
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a ‘smooth’ distribution function f ( Q , t )  (see Section 2G above). Such behaviour 
is interpreted in terms of the free reorientations of molecules interrupted by 
collisions and many models have been proposed.2~s~9~52-57~138 

5 Computer Simulations of Dynamical Behaviour 
As indicated in Section 2F, computer simulations of the dynamics of assemblies 
of molecules yield both equilibrium and dynamic data, where the dynamic 
data are in the form of translational and reorientational time-correlation func- 
tions and their memory functions. Simulations have been made for argon,G5 
for diatomic m o 1 e c u l e s , 2 ~ ~ 7 ~ 5 8 ~ 6 6 ~ 6 i ~ 1 3 ~ ~ 1 4 0  for liquid water,68 and for ionic 
melts,141,142 and all relate to ‘fast’ motions with t < 10-lo s. The translational 
motions [as expressed by e.g. ( ~ ( 0 ) .  v ( t ) ) ]  and the reorientational motions, as 
expressed by (PI [uc t )] )  and (PP [u( t ) ]>,  generally exhibit free-particle behaviour 
at short times, complicated behaviour at intermediate times due to collisions, 
and exponential behaviour at long times where the process may be regarded as 
stochastic. A good example of such behaviour is afforded by the calculations 
of ( P I  [ ~ ( t ) ] )  and ( P z ( u ( t ) ] )  for CO by Berne and co-workers.143 As one example 
of the results of simulations, Figure 10 shows ( P ~ [ u ( t ) ] )  for a model of liquid 
water.68 At short times there is a sharp oscillatory drop of about 20% of the 
total correlation function, followed by the exponential decay having 
TI = 6.7 x s. The short-time behaviour corresponds to oscillatory motions 
of the hydrogen-bonded molecules, the long-time behaviour to the gross 
rearrangements of molecular orientations via co-operative processes involving 
a sequence of finite stochastic jumps. Rahman and Stillinger also simulated 
( P z [ u ( t ) ] ) ,  which is found to be rather similar to ( P ~ [ u ( t ) ] )  (Figure lo), but 
decays more rapidly with 71/72 = 2.7 [compared with 7 1 / 7 2  = 3 for rotational 
diffusion, equation (27)]. 

Such simulations should provide a valuable means whereby experimental 
data may be reconstructed using molecular parameters and intermolecular 
potential functions. Up to the present a qualitative and semi-quantitative under- 
standing of fast molecular motions has been sought with the aid of computer 
simulation. The results obtained clearly demonstrate the inadequacies of simple 
models for motion [e.g. equations (9, (16), and ( 3 7 ) ]  and will, no doubt, lead 
to new generations of models for motion which are based on quantities having a 
physical interpretation. 

6 Conclusions 
The material presented in this review has been selected so that it will act as an 
introduction to the time-correlation function approach to molecular motion, 

138 R. E. D. McClung, S. Chem. Phys., 1972, 57, 5478. 
139 W. Streett and D. Tildesley, Proc. Roy. Soc., 1976, A348, 485. 
140 M. Evans, G. Evans, and G. Wegdam, (a)  Mol. Phys., 1977, 33, 1805; (6)  Adv. Mol. 

141 Ref. 84, p. 163. 
142 J. W. E. Lewis and K. Singer, J.C.S. Faraduy 11, 1975, 71, 41, and refs. therein. 
143 Ref. 2, p. 697, Figure 29. 

Relaxation Processes, 1977, 11, 295. 
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Figure 10 (P , [u ( t ) ] ) ,  calculated by the method of molecular dynamics, for a model o f  
liquid water at 307.5 K 
(Reproduced by permission from J.  Chem. Phys., 1971, 55, 3336)  

will clarify through examples how time-correlation functions may relate to 
experimentally determined quantities, and will make chemists more aware 
that studies of liquids and solids using the diverse experimental techniques 
listed in Table 1 may have common interpretations through the underlying 
time-correlation functions for molecular motion. Up to the present, data from a 
given experimental technique have largely been interpreted without recourse 
to information from other experiments. In recent years some comparisons have 
been made, usually in terms of averaged relaxation times which, being integrals 
over time-correlation functions, only reflect a limited aspect of the dynamical 
process. In order that a more satisfactory understanding of the nature and form 
of motions in liquids and solids may be achieved, the writer suggests that greater 
effort should be made to obtain experimental time-correlation functions for a 
given system from as many experimental techniques as possible and that the 
interpretation of such data be made using all the results. This is now a practical 
possibility and is very necessary when a given experiment involves several time- 
autocorrelation functions, e.g. neutron-scattering, light-scattering (Sections 4F, 
4G), or several cross-correlation functions, e.g. dielectric relaxation, Kerr-effect 
relaxation (Sections 4B, 4C). 
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